Research Group: Vascular Malformations

Contact

Dr. rer. nat. Robin Alexander Pilz

Research interests

The focus of our research group lies on cerebral cavernous malformations (CCM) which are sometimes also called cavernous angiomas or cavernomas. These enlarged endothelial channels can be found in the venous-capillary bed of the central nervous system. They lack supporting pericytes and smooth muscle cells and tend to bleed. Haemorrhages into the neighbouring brain parenchyma may cause recurrent headaches, seizures and stroke-like symptoms.

Adapted from: Rath et al., J Med Genet. 2020;57(3):212-216.

CCMs may occur sporadically or in an autosomal dominant form. Familial CCM is caused by loss-of-function germline variants in one of three genes: CCM1/KRIT1, CCM2/OSM and CCM3/PDCD10. The prevalence of symptomatic carriers of a pathogenic CCM1, CCM2 or CCM3 variant is approximately 1:5,400-1:6,200. The first symptoms are usually reported in the second to fifth decade of life. However, one third of CCM patients are minors and 20% are younger than 10 years. Analyses of human CCM tissue samples with ultra-sensitive next generation sequencing technologies and immunohistochemistry have supported the hypothesis of a genetic two-hit mechanism in CCM formation (Figure). 

 

Adapted from: Rath & Schwefel et al., Cell Mol Life Sci. 2022;79(6):340.

We pursue the scientific concept of elucidating the pathogenesis of hereditary vascular malformations at the gene, cell or organism level. For this purpose , we use latest sequencing technologies (long read sequencing) and CRISPR/Cas9-mediated genome editing. By targeted inactivation of CCM1, CCM2 or CCM3 in human induced pluripotent stem cells (hiPSCs) and their differentiation into endothelial cells or three-dimensional blood vessel organoids, we try to mimic the situation in cavernomas as closely as possible.
 
By combining these complex cell culture models with live cell imaging, compound library screening and bulk and single cell RNA sequencing, we have already gained new insights into cerebral cavernous malformations. For example, we have been able to further characterise the survival advantage of cells following inactivation of CCM1, CCM2 or CCM3 (Figure). This already allowed us to identify  pharmacological compounds as new potential therapeutics.

 

Funding

Funding

  • Federal Ministry of Education and Research/BMBF (161L0276, 2021-2024)
  • DFG (RA2876/2-2, 2020-2022)
  • DFG (RA2876/2-1, 2017-2020)
  • DFG (FE432/9-1, 2014-2017)
  • EnVision (FP7-REGPOT-2010, 2011-2014)
  • BayGen (2006-2010).
  • DFG Research Training Group 1048 „Molecular basis of organ development in vertebrates“ (Zebrafish as model organism for cerebral cavernous malformations, 2008-2010)

Team Members

Team Members

Prof. Dr. Ute Felbor

 

Dr. Robin Pilz

 

Dr. Dariush Skowronek

 

Dr. Christiane Much

 

Valeriia Saenko, M. Sc. (PhD student)

 

Till Page (MD student)

 

Barbara Sendtner (MD student)

 

 

Publications

Publications

  • Skowronek D, Pilz RA, Saenko VV, et al. High-throughput Differentiation of human blood vessel organoids reveals overlapping and distinct functions of the cerebral cavernous malformation Proteins. BioRxiv (Preprint). 2024:12.04.626588. doi:10.1101/2024.12.04.626588
  • Pilz RA, Skowronek D, Ehresmann T, Felbor U, Rath M. Novel postzygotic RASA1 Mutation in a Patient with Parkes Weber Syndrome: A case report and literature review. Clin Case Rep. 2024;12(11):e9543. doi:10.1002/ccr3.9543
  • Pilz RA, Skowronek D, Mellinger L, Bekeschus S, Felbor U, Rath M. Endothelial Differentiation of CCM1 Knockout iPSCs Triggers the Establishment of a Specific Gene Expression Signature. Int J Mol Sci. 2023;24(4):3993. doi:10.3390/ijms24043993
  • Skowronek D, Pilz RA, Bonde L, et al. Cas9-Mediated Nanopore Sequencing Enables Precise Characterization of Structural Variants in CCM Genes. Int J Mol Sci. 2022;23(24):15639. doi:10.3390/ijms232415639
  • Pilz RA, Skowronek D, Hamed M, et al. Using CRISPR/Cas9 genome editing in human iPSCs for deciphering the pathogenicity of a novel CCM1 transcription start site deletion. Front Mol Biosci. 2022;9:953048. doi:10.3389/fmolb.2022.953048
  • Rath M, Schwefel K, Malinverno M, et al. Contact-dependent signaling triggers tumor-like Proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells. Cell Mol Life Sci. 2022;79(6):340. doi:10.1007/s00018-022-04355-6
  • Rath M, Pagenstecher A, Hoischen A, Felbor U. Postzygotic mosaicism in cerebral cavernous malformation. J Med Genet. 2020;57(3):212-216. doi:10.1136/jmedgenet-2019-106182
  • Schwefel K, Spiegler S, Kirchmaier BC, et al. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J. 2020; 34: 9018– 9033. doi:10.1096/fj.201902888R
  • Schwefel K, Spiegler S, Much CD, Felbor U, Rath M. CRISPR/Cas9-mediated Generation of Human Endothelial Cell Knockout Models of CCM Disease. Methods Mol Biol. 2020;2152:169-177. doi:10.1007/978-1-0716-0640-7_13
  • Schwefel K, Spiegler S, Ameling S, et al. Biallelic CCM3 mutations cause a clonogenic survival advantage and endothelial cell stiffening. J Cell Mol Med. 2019;23(3):1771-1783. doi:10.1111/jcmm.14075
  • Pilz RA, Schwefel K, Weise A, et al. First interchromosomal insertion in a patient with cerebral and spinal cavernous malformations. Sci Rep. 2020;10(1):6306. doi:10.1038/s41598-020-63337-5
  • Moog U, Felbor U, Has C, Zirn B. Disorders Caused by Genetic Mosaicism. Dtsch Arztebl Int. 2020;116(8):119-125. doi:10.3238/arztebl.2020.0119
  • Skowronek D, Hebebrand M, Erber R, et al. Identification and characterization of a GLMN splice site variant in a family with glomuvenous malformations. Eur J Dermatol. 2020;30(2):179-181. doi:10.1684/ejd.2020.3716
  • Much CD, Schwefel K, Skowronek D, et al. Novel Pathogenic Variants in a Cassette Exon of CCM2 in Patients With Cerebral Cavernous Malformations. Front Neurol. 2019;10:1219. doi:10.3389/fneur.2019.01219
  • Spiegler S, Rath M, Much CD, Sendtner BS, Felbor U. Precise CCM1 gene correction and inactivation in patient-derived endothelial cells: Modeling Knudson's two-hit hypothesis in vitro. Mol Genet Genomic Med. 2019;7(7):e00755. doi:10.1002/mgg3.755
  • Pilz RA, Korenke GC, Steeb R, Strom TM, Felbor U, Rath M. Exome sequencing identifies a recurrent SOX2 deletion in a patient with gait ataxia and dystonia lacking major ocular malformations. J Neurol Sci. 2019;401:34-36. doi:10.1016/j.jns.2019.04.007
  • Rath M, Spiegler S, Strom TM, Trenkler J, Kroisel PM, Felbor U. Identification of pathogenic YY1AP1 splice variants in siblings with Grange syndrome by whole exome sequencing. Am J Med Genet A. 2019;179(2):295-299. doi:10.1002/ajmg.a.60700
  • Spiegler S, Rath M, Paperlein C, Felbor U. Cerebral Cavernous Malformations: An Update on Prevalence, Molecular Genetic Analyses, and Genetic Counselling. Mol Syndromol. 2018;9(2):60-69. doi:10.1159/000486292
  • Spiegler S, Rath M, Hoffjan S, et al. First large genomic inversion in familial cerebral cavernous malformation identified by whole genome sequencing. Neurogenetics. 2018;19(1):55-59. doi:10.1007/s10048-017-0531-7
  • Rath M, Korenke GC, Najm J, et al. Exome sequencing results in identification and treatment of brain dopamine-serotonin vesicular transport disease. J Neurol Sci. 2017;379:296-297. doi:10.1016/j.jns.2017.06.034
  • Rath M, Jenssen SE, Schwefel K, et al. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations. Eur J Med Genet. 2017;60(9):479-484. doi:10.1016/j.ejmg.2017.06.007
  • Rath M, Spiegler S, Nath N, et al. Constitutional de novo and postzygotic mutations in isolated cases of cerebral cavernous malformations. Mol Genet Genomic Med. 2016;5(1):21-27. Published 2016 Dec 20. doi:10.1002/mgg3.256
  • Spiegler S, Kirchmaier B, Rath M, et al. FAM222B Is Not a Likely Novel Candidate Gene for Cerebral Cavernous Malformations. Mol Syndromol. 2016;7(3):144-152. doi:10.1159/000446884
  • Spiegler S, Najm J, Liu J, et al. High mutation detection rates in cerebral cavernous malformation upon stringent inclusion criteria: one-third of probands are minors. Mol Genet Genomic Med. 2014;2(2):176-185. doi:10.1002/mgg3.60
  • Wüstehube J, Bartol A, Liebler SS, et al. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A. 2010;107(28):12640-12645. doi:10.1073/pnas.1000132107
  • Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet. 2009;18(5):911-918. doi:10.1093/hmg/ddn420
  • Voss K, Stahl S, Hogan BM, et al. Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat. 2009;30(6):1003-1011. doi:10.1002/humu.20996
  • Stahl S, Gaetzner S, Voss K, et al. Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat. 2008;29(5):709-717. doi:10.1002/humu.20712

GfH-Posterpreis 2019 für Dr. Konrad Schwefel